

Environmental Fate of Antimicrobials: 50 Years in 15 Minutes

Rolf Halden, PhD, PE

Pacific Southwest Organic Residuals Symposium October 1-2, 2008, University of California at Davis

Triclocarban (TCC)

1957

Publishing Activity

тне biodesign імѕтітите

ARIZONA STATE UNIVERSITY

Environmental and Human Health Concerns

Degradates

(including chloroform)

Persistent Environmental Contaminant

Cross-resistance to Antibiotics

Impurities

Triclosan

Bioaccumulation

Acts as Carcinogen, Mutagen or Teratogen

Endocrine Disruption

Environmental and Human Health Concerns

Degradates

$$H_2N$$
 NH_2
 NH_2

Persistent
Environmental
Contaminant

Cross-resistance to Antibiotics ?

Impurities

Triclocarban

Bioaccumulation ? ✓

Acts as Carcinogen,

Mutagen or

Teratogen

(Indirectly through metabolites)?

Endocrine Disruption

USGS Stream Monitoring Network

Source: Kolpin et al. USGS 2002, ES&T 36:1202-1211

Accumulation of TCC in Digested Sludge During Wastewater Treatment

Fate of Triclocarban During Activated Sludge Treatment

Mass in effluentMass in sludgeMass transformed/lost

Fate of Triclosan in Activated Sludge WWTP

- Mass in effluent
- Mass in sludge
- ☐ Mass transformed/lost

Meta-Analysis of Mass Balances

Triclosan & triclocarban can serve as surrogates for multiple issues

- Personal care products
- Pharmaceuticals
- Pesticides
- Endocrine disruptors
- Persistent halogenated aromatic compounds
- Promoters of antimicrobial resistance, cross-resistance, and multiple drug resistance
- Modulators and stressors of microbial communities
- Pollutants of aquatic & terrestrial environments
- Others

Nationwide Data of PPCPs in Biosolids

- 110 Wastewater treatment facilities
- 30+ U.S. States
- 70+ PPCPs examined
- Measurements validated by independent certified laboratory
- Triclocarban identified as the most abundant contaminant
- Triclosan identified as the second most abundant contaminant
- Together, TCC and TCS contributed >50% of the total mass of PPCPs targeted for analysis in biosolids
- TCC and TCS had the most unfavorable risk ratios (concentration in biosolids/EC50 values of most sensitive organisms)
 (TCC and TCS have no proven benefit for use in consumer products)
- => Removal of TCC/TCS-containing consumer products from the market would reduce by more than half the current PPCP loading to U.S. soils and associated risks from biosolids applications

ARIZONA STATE UNIVERSITY

Analysis of Environmental Occurrence Data Vis-a-Vis Toxic Threshold Levels of Susceptible Organisms

- TCC &TCS occur nationwide in:
 - raw sewage $(1.86 26.8 \mu g/L \text{ for TCS}; 0.4 50 \mu g/L \text{ for TCC})$
 - sewage treatment plant effluent (0.027 2.7 μg/L for TCS; 0.1 6 μg/L for TCC)
 - surface waters (<2.3 μg/L for TCS; typically <0.25 μg/L; up to 6.75 μg/L of TCC in sewage impacted streams)
 - biosolids (90 32,900 μ g/kg for TCS; 3,050 51,000 μ g/kg for TCC)
 - sediments (up to 53,000 µg/kg for TCS; up to 24,000 µg/kg for TCC)
- Environmental occurrences in some locales exceed the threshold values of susceptible organisms:
 - algae in U.S. surface waters (TCS)
 - crustaceans in U.S. aquatic environments (TCC)
 - concentrations in some locations in U.S. streams approach levels that are toxic to fish (TCC)
 - microorganisms (the targets of antimicrobial agent usage) are orders of magnitude more tolerant to TCS and TCC than sensitive aquatic and terrestrial non-target receptor organisms (algae, crustaceans, fish etc.)

Persistence & Fate

- TCC & TCS are persistent, particularly under anaerobic conditions
 - can persist for decades in aquatic sediments*
- PPCPs in the environment: dilution is <u>not</u> the solution
 - ppb _{WWTP Influent} => ppt _{WWTP Effluent} => ppm _{Biosolids}, Sediments, Earthworms

State of Science

Triclosan & Triclocarban

- have no proven benefit for most current uses (according to 2005 FDA panel)
 - antimicrobials can save lives but TCC & TCS containing consumer products do not
- >>1M lbs/year combined; production up; >1,500 different products
- detectable in >50% of U.S. surface waters; ~400,000 lbs/year contained in sludge deposited on land
- toxic to aquatic biota at ng/L level
- accumulate in sludge, sediment and house dust to ppm levels (significant fraction of total organohalogen burden)
- bioaccumulate in algae and earthworms
- endocrine disrupting properties
- promote drug-resistance in vitro
- contain dioxins & carcinogenic impurities
- degrade to form additional carcinogens (e.g., chloroanilines)
- long environmental half-lives; years/decades in anaerobic environments
- detectable in fish, house dust, urine, blood from adults & fetuses and in 97% of U.S. breast milk samples

Acknowledgements

Contributors

- Kristin McClellan, MS
- Randhir Deo, PhD
- Daniel Paull
- Jochen Heidler, PhD
- Amir Sapkota, PhD
- Todd Miller, PhD
- Thayer Young, MS
- Amelia DeLaquil, BS
- Talia Chalew, MS
- Steven Chillrud, PhD
- Richard Bopp, PhD
- Jerry Ritchie, PhD

Technical Assistance

- US EPA
- City of Baltimore
- John Martin, PhD and Nick Frankos
- WEF Collaborators
- Groundwater Foundation

Funding/Support

- US EPA
- NIEHS
- CDC
- JHU-CLF
- Gifts